Feature-Level Domain Adaptation

نویسندگان

  • Wouter M. Kouw
  • Laurens van der Maaten
  • Jesse H. Krijthe
  • Marco Loog
چکیده

Domain adaptation is the supervised learning setting in which the training and test data are sampled from different distributions: training data is sampled from a source domain, whilst test data is sampled from a target domain. This paper proposes and studies an approach, called feature-level domain adaptation (flda), that models the dependence between the two domains by means of a feature-level transfer model that is trained to describe the transfer from source to target domain. Subsequently, we train a domain-adapted classifier by minimizing the expected loss under the resulting transfer model. For linear classifiers and a large family of loss functions and transfer models, this expected loss can be computed or approximated analytically, and minimized efficiently. Our empirical evaluation of flda focuses on problems comprising binary and count data in which the transfer can be naturally modeled via a dropout distribution, which allows the classifier to adapt to differences in the marginal probability of features in the source and the target domain. Our experiments on several real-world problems show that flda performs on par with state-of-the-art domainadaptation techniques.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sample-oriented Domain Adaptation for Image Classification

Image processing is a method to perform some operations on an image, in order to get an enhanced image or to extract some useful information from it. The conventional image processing algorithms cannot perform well in scenarios where the training images (source domain) that are used to learn the model have a different distribution with test images (target domain). Also, many real world applicat...

متن کامل

Image alignment via kernelized feature learning

Machine learning is an application of artificial intelligence that is able to automatically learn and improve from experience without being explicitly programmed. The primary assumption for most of the machine learning algorithms is that the training set (source domain) and the test set (target domain) follow from the same probability distribution. However, in most of the real-world application...

متن کامل

Joint Pixel and Feature-level Domain Adaptation in the Wild

Recent developments in deep domain adaptation have allowed knowledge transfer from a labeled source domain to an unlabeled target domain at the level of intermediate features or input pixels. We propose that advantages may be derived by combining them, in the form of different insights that lead to a novel design and complementary properties that result in better performance. At the feature lev...

متن کامل

Image Classification via Sparse Representation and Subspace Alignment

Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...

متن کامل

Cycada: Cycle-consistent Adversarial Domain Adaptation

Domain adaptation is critical for success in new, unseen environments. Adversarial adaptation models applied in feature spaces discover domain invariant representations, but are difficult to visualize and sometimes fail to capture pixel-level and low-level domain shifts. Recent work has shown that generative adversarial networks combined with cycle-consistency constraints are surprisingly effec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Machine Learning Research

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2016